Blog




  Astronomers know that most galaxies house supermassive black holes in their centers, from the largest galaxies down to small dwarfs. They also know that when supermassive black holes are actively feeding, they can slow or even stop the formation of stars in their home. Although this relationship has been well established for large galaxies, it has not been studied much in dwarf galaxies. Now, researchers have discovered that black holes in dwarf galaxies are capable of shutting down star formation, just like their more massive counterparts.The finding, published October 11 in The Astrophysical Journal, shows that winds of energetic gas and particles blasted out by supermassive black holes can stop star formation in dwarf galaxies. It is the first time that black hole winds in dwarf galaxies have been studied in such detail, according to the team. And it’s an intriguing find, because astronomers didn’t expect such strong winds from the black holes in dwarf gala...

Read More



How the first exoplanets were discovered

Tuesday, October 15th 2019 09:56 AM

  In 1992, astronomers discovered the first exoplanet, or planet outside our solar system. But it didn’t come in any form they’d really anticipated. Neutron stars are the second densest type of object in the universe outside black holes. They form when a giant star dies and explodes outward as a result of the collapse of its core. Put simply, the star becomes too massive to go on and expels all its energy into the surrounding space. The core is a sort of ground zero of this detonation. When that core collapses, depending on the size of the star, it becomes either a neutron star or a black hole. Some neutron stars are called pulsars, for the regular “pulses” they give off in radio frequencies. Think of many of them like a drummer — fast regular beats. Some pulsars, called millisecond pulsars, “drum” so fast that it would put Napalm Death’s drummer Danny Herrera to shame. Those pulses are so regular that if they don’t c...

Read More



  Every massive galaxy likely harbors a supermassive black hole at its center, weighing in at millions or even billions of times the mass of our Sun. Earlier this year, for the first time ever, a team even managed to image the shadow cast by one of these objects on the hot gas and dust around it. But while supermassive black holes are ubiquitous and well studied, the link between these objects and their home galaxies remains mysterious.Now, new research published August 23 in the Monthly Notices of the Royal Astronomical Society is bolstering a simple idea about how these pairs evolve. The authors found that galaxies and their black holes grow together, regardless of where in the universe they are.“The observed relation between the mass of the central supermassive black hole the stellar mass of a galaxy has long been a puzzle,” Thomas Quinn of the University of Washington, a co-author on the new study published, told Astronomy in an email....

Read More



  Galaxies and dark matter stretch throughout our universe as a vast cosmic web. They cluster together in some areas and leave empty voids in others.But how early in the universe’s history the clusters began to form is still unknown. Now, researchers have found the most distant and earliest example of a galaxy protocluster, a group of galaxies beginning to clump together, about 13 billion light-years away, they report in a new paper that will appear September 30 in The Astrophysical Journal. The rare find may add to astronomers’ understanding of how and when today’s galaxy clusters formed and how galaxies’ surroundings affect their evolution.   “By investigating the protoclusters that are ancestors of the clusters, we can study when and how galaxy clusters form and evolve,” said the study’s lead author, Yuichi Harikane of the National Astronomical Observatory of Japan, in an email.In an effort to understand t...

Read More



  The massive planet, which shouldn't exist based on current theories, is prompting astronomers to revisit their models for planetary formation.    The newly discovered planet, named GJ 3512 b, is half the mass of Jupiter. Researchers think its tiny red dwarf host not only likely harbors an additional massive planet, but also ejected another in the past. NASA/JPL-Caltech Astronomers have discovered a gigantic planet orbiting a puny star some 30 light-years away. And according to current theories, the planet shouldn’t exist. Dubbed GJ 3512 b, the gas giant is at least half the mass of Jupiter. But it orbits a red dwarf star that’s just one-tenth the mass of our Sun. "Around such stars there should only be planets the size of the Earth or somewhat more massive Super-Earths," said Christoph Mordasini of the University of Bern in a press release. "GJ 3512 b, however, is … at least one order of magnitude more massive than the...

Read More



Shredded exomoon may explain weird behavior of Tabby’s Star

Thursday, September 19th 2019 10:41 AM

Tabby's star may have kidnapped an icy “exomoon” from its parent planet and brought it close in, where the world evaporated, creating dust and debris.   An artist’s concept of a ring of dust orbiting Tabby’s Star.  NASA/JPL-Caltech About four years ago, one star gained notoriety when some astronomers suggested its weird light pattern could be signs of artificial “alien megastructures” blocking the star’s light. Though scientists generally say that clouds of gas and dust are most likely the culprit, the source of that gas and dust remains a mystery.One possibility is that the star, formally called KIC 8462852, kidnapped an icy “exomoon” from its parent planet within the system, researchers reported this week in the journal Monthly Notices of the Royal Astronomical Society. Scientists called these hypothetical escaped moons “ploonets.” And if such a moon was brought close...

Read More



Astronomers can't agree on galaxies without dark matter

Tuesday, September 10th 2019 11:05 AM

The discovery of two ghostly galaxies devoid of dark matter created quite a stir in the astronomical community. But the jury's still out on what's really going on.   NGC1052-DF2 is a large, but very diffuse galaxy located some 65 million light-years away. This image of the galaxy, which is thought to contain a negligible amount of dark matter, was captured by the Advanced Camera for Surveys on the Hubble Space Telescope. NASA/ESA/P. van Dokkum (Yale University) Some 60 million light-years from Earth, not too far from our local galactic neighborhood, a strange little galaxy is causing a cosmic stir. This little island universe holds far fewer stars than your average galaxy. But it's not the lack of stars that's surprising astronomers. The galaxy, nicknamed DF2, also seems to lack any significant amount of dark matter. Because DF2 would be the very first known galaxy without the mysterious substance, the news of its discovery in 2018 quickly spread...

Read More



Cosmic collision may reveal how giant stars form

Wednesday, September 4th 2019 09:48 AM

  Astronomers have witnessed a rare event: the birth of massive stars 2.73 million light-years away in the Triangulum Galaxy (Messier 33). At the center of two giant colliding gas clouds are some 10 young stars with masses tens of times that of the Sun. Their discovery indicates that such cloud-cloud collisions are a main pathway to creating giant stars in the nearby universe, which could help answer the long-standing question of how big stars form.   Cosmic Collision High-mass stars — those at least eight times the mass of the Sun — are the celebrities of galaxies. Although they’re relatively rare, they produce most of a galaxy’s visible light. They also strongly influence the environment around them through the radiation they release during their lifetimes and the heavy elements they scatter upon their explosive deaths. Their formation, however, remains debated. New research submitted to the Publications of the Astronomical Society of...

Read More



Earth is the only place in the universe where we know life exists. But with billions of other star systems out there, it might not be the best place for life. In a new study, astronomers modeled the potential for life on other watery planets and found some conditions that can create oceans maximized for habitability. The model suggests that watery planets with dense atmospheres, continents, and long days — slowly rotating planets that is — were most conducive to life. These conditions stimulate ocean circulation, which brings nutrients from the depths to the surface where it’s available for biologic activity. “[The research] shows us that conditions on some exoplanets with favorable ocean circulation patterns could be better suited to support life that is more abundant or more active than life on Earth,” Stephanie Olson, a University of Chicago researcher who lead the new study, said in a press release. To date, over 4,000 exoplanets have been...

Read More



To map the universe, astronomers string together distance measurements to ever-farther objects, like climbing rungs on a cosmic ladder.   The cosmic distance ladder allows astronomers to confidently measure vast distances.   When humans look up at the night sky, they naturally ask the question: How far away is that planet, or that star, or that galaxy? Distance is one of the most fundamental measurements astronomers make, but it’s also one of the most challenging. Fortunately, astronomers have a vital tool to help them answer that central question: how far? That tool is the cosmic distance ladder. This ladder has “rungs” of objects with certain properties that let astronomers confidently measure their distance. Jumping to each subsequent rung relies on methods for measuring objects that are ever farther away, the next step often piggybacking on the previous one. For example, once astronomers measure the distance to a galaxy using one r...

Read More